MERI COLLEGE OF ENGINEERING AND TECHNOLOGY

Asanda, Near Sampla

(www.meri.edu.in/engineering/)

LESSON PLAN

Name of the faculty	:	Er. Gaurav Kumar
Discipline	•	EEE/ECE
Semester	:	7 th
Subject	:	DSP
Lesson Plan Duration	:	15 weeks (From August, 2018 to November 2018)

Work Load (Lecture/ Practical) per week (in hours): Lecture-04, Practical-02

Week		Theory	Practical		
	Lecture day	Topic(Including assignment/test)	Practical Day	Торіс	
1 st	1 st	Digital Signal Processing – Introduction, Basic elements of digital signal Processing, Concept of frequency in continuous time signals	1 st	To understand sampling theorem & generation of waveforms like sine, square & Triangle	
	2 nd	Digital Signal Processing – Introduction, Basic elements of digital signal Processing, Concept of frequency in continuous time signals			
	3 rd 4 th	Concept of frequency in discrete time signals Sampling theorem	-		
2 nd	$\frac{1^{\text{st}}}{2^{\text{nd}}}$	Sampling theoremSampling theoremDiscrete time signals and Discretetime systemsAnalysis of Linear time invariantsystems: response of LTI systemsto arbitrary inputs, convolution	2 nd	To develop program for discrete convolution	
	4 th	Analysis of Linear time invariant systems: response of LTI systems to arbitrary inputs, convolution			

		sum		
3 rd	1^{st}	properties of convolution &	3^{rd}	To develop program for
		interconnection of systems		discrete correlation.
	2^{nd}	Correlation of discrete time		
		signals, properties of cross		
		correlation and auto correlation		
	nd	sequences	_	
	$3^{\rm rd}$	Correlation of discrete time		
		signals, properties of cross		
		correlation and auto correlation		
	th	sequences	_	
	4^{th}	The Z transform, convergence		
41-	-1	properties and inverse Z transform	4	
4^{th}	1^{st}	Properties of Z transform:	4^{th}	To study Quantization
		linearity, time shifting, scaling,		technique
		time reversal, differentiation in the		
		Z domain	_	
	2^{nd}	Properties of Z transform:		
		linearity, time shifting, scaling,		
		time reversal, differentiation in the		
		Z domain	_	
	$3^{\rm rd}$	Z transform properties :		
		convolution of two sequences,		
		correlation of two sequences,		
		multiplication of two sequences,		
	4^{th}	Parseval's relation, Initial value		
41-	-1	theorem	4	
5 th	1^{st}	Introduction to Discrete fourier	5 th	To study PCM encoding & Hamming code generation
		transform -DFT		
	2^{nd}	Properties of DFT : Periodicity,		
		linearity and symmetry,		
		multiplication of two DFTs	_	
	$3^{\rm rd}$	Properties of DFT : Periodicity,		
		linearity and symmetry,		
	41-	multiplication of two DFTs	_	
	4^{th}	Properties of DFT : Circular		
		Convolution time reversal, circular		
		time shift, circular frequency shift,		
th	ot	Parseval's theorem	th	
6 th	1^{st}	Efficient computation of DFT:	6 th	represent basic signals
		Direct computation, Divide and		(Unit step, unit impulse,
		conquer approach		ramp, exponential, sine
	2^{nd}	Radix-2 FFT algorithms:		and cosine)
		Decimation in time (DIT)		
	$3^{\rm rd}$	Tutorial – Radix 2 FFT-		
		Decimation in Time		
	4^{th}	Radix-2 FFT algorithms:		

		Decimation in frequency (DIF)		
7 th	1^{st}	Tutorial – Radix 2 FFT-	7 th	To design analog
		Decimation in frequency (DIF)		filter(low-pass, high pass,
	2^{nd}	Use of FFT algorithms in Linear		band-pass, band-stop)
		Filtering DCT-Discrete Cosine		
		Transform		
	3 rd	Continuous Assessment Test – 1		
	4^{th}	Structure of IIR- Direct form		
		structures		
8^{th}	1^{st}	Structure of IIR- Direct form	8 th	To design digital IIR filters(low-pass, high pass, band-pass, band-
		structures		
	2^{nd}	Direct form structures :form I and		
		II Realization		stop)
	$3^{\rm rd}$	Cascade form structures, Parallel		
		form structures		
	4^{th}	Lattice and lattice ladder structures		
9 th	1^{st}	Tutorial on IIR structures	9 th	To design digital IIR
	2^{nd}	Analog filter Design		filters(low-pass, high
	3 rd	Design of IIR filters from		pass, band-pass, band-
		continuous time filter		stop)
	4^{th}	Design of IIR filters from	-	
		continuous time filter		
10^{th}	1^{st}	IIR filter design by Impulse	10 th	To design FIR filters
10		Invariance		using windows technique.
	2^{nd}	IIR filter design by Bilinear		
		transformation		
	$3^{\rm rd}$	Tutorial on IIR filter design		
	4^{th}	IIR filter design by Approximation		
		of derivatives		
11^{th}	1^{st}	High Pass Filter, Band Pass Filter,	11^{th}	To design FIR filters using windows technique.
	2^{nd}	Band Reject Filter design using		
		frequency translation		
	3 rd	Band Reject Filter design using	-	
		frequency translation		
	4^{th}	Structures for FIR systems:Direct	-	
		and Cascade form structures		
12^{th}	1^{st}	Frequency Sampling Structures,	12^{th}	. To study Auto
12		Lattice structures		correlation & Linear convolution
	2^{nd}	Tutorial on FIR structures	-	
	3 rd	Linear phase FIR filter – Filter		
		design using windowing		
		techniques		
	4 th	Filter Design using Rectangular	1	
13 th	1 st	Hamming and Hanning windows	13 th	To study FIR Filter
	2^{nd}	Tutorial on design of FIR filter		Implementation.
	-	using Rectangular ,Hamming and		r
		Hanning windows		

3^{rd}	Tutorial on design of FIR filter		
	using Rectangular, Hamming and		
	Hanning windows		
4^{th}	Filter Design using Bartlett and		
	Kaiser windows		
1^{st}	Tutorial on design of FIR filter	14^{th}	To study FIR Filter
	using Bartlett and Kaiser windows		Implementation.
2^{nd}	Design of linear phase FIR filters		
	by Frequency Sampling		
	Techniques		
$3^{\rm rd}$	Tutorial on Frequency Sampling		
	Techniques		
4^{th}	Finite word length effects in		
	digital Filters : Quantization noise,		
	comparison between over flow,		
	truncation and co-efficient		
	quantization error		
1 st	Discussion on previous year	15 th	To Study Digital
	question papers		modulation techniques
2^{nd}	Discussion on previous year		ASK/FSK& PSK .
	question papers		
3 rd	Discussion on previous year]	
	question papers		
4^{th}		1	
	question papers		
	2 nd 3 rd	1using Rectangular ,Hamming and Hanning windows4thFilter Design using Bartlett and Kaiser windows1stTutorial on design of FIR filter using Bartlett and Kaiser windows2ndDesign of linear phase FIR filters 	using Rectangular ,Hamming and Hanning windows4thFilter Design using Bartlett and Kaiser windows1stTutorial on design of FIR filter using Bartlett and Kaiser windows2ndDesign of linear phase FIR filters by Frequency Sampling Techniques3rdTutorial on Frequency Sampling Techniques4thFinite word length effects in digital Filters : Quantization noise, comparison between over flow , truncation and co-efficient quantization error1stDiscussion on previous year question papers3rdDiscussion on previous year question papers4thDiscussion on previous year question papers4thDiscussion on previous year question papers4thDiscussion on previous year question papers3rdDiscussion on previous year question papers4thDiscussion on previous year question papers4thDiscussion on previous year question papers3thDiscussion on previous year question papers4thDiscussion on previous year question papers4thDiscussion on previous year question papers4thHereHere4thHereHereHereHereHereHereHereHereHereHereHereHereHereHereHereHer

BOOKS REFERRED:

TEXT BOOK:

1. John G. Proakis & Dimitris G.Manolakis, "Digital Signal Processing – Principles, Algorithms & Applications", Fourth edition, Pearson education / Prentice Hall, 2007.

2. Emmanuel C..Ifeachor, & Barrie.W.Jervis, "Digital Signal Processing", Second edition, Pearson Education / Prentice Hall, 2002.

REFERENCES:

 Alan V.Oppenheim, Ronald W. Schafer & Hohn. R.Back, "Discrete Time Signal Processing", Pearson Education, 2nd edition, 2005.
Andreas Antoniou, "Digital Signal Processing", Tata McGraw Hill, 2001